Bernoulli-getallen
Zo bereken je de Bernoulli-getallen (voor de afleiding zie
deze pagina):
In onderstaande tabel staan de eerste honderdeen Bernoulli-getallen (er zijn er oneindig veel en behalve B
1 is ieder
oneven Bernoulli-getal gelijk aan nul).
n |
Bn (als breuk) |
Bn (decimaal) |
0 |
1 |
1.00000 |
1 |
−1/2 |
−0.50000 |
2 |
1/6 |
0.16667 |
3 |
0 |
0.00000 |
4 |
−1/30 |
−0.03333 |
5 |
0 |
0.00000 |
6 |
1/42 |
0.02381 |
7 |
0 |
0.00000 |
8 |
−1/30 |
−0.03333 |
9 |
0 |
0.00000 |
10 |
5/66 |
0.07576 |
11 |
0 |
0.00000 |
12 |
−691/2730 |
−0.25311 |
13 |
0 |
0.00000 |
14 |
7/6 |
1.16667 |
15 |
0 |
0.00000 |
16 |
−3617/510 |
−7.09216 |
17 |
0 |
0.00000 |
18 |
43867/798 |
54.97118 |
19 |
0 |
0.00000 |
20 |
−174611/330 |
−529.12424 |
21 |
0 |
0.00000 |
22 |
854513/138 |
6192.12319 |
23 |
0 |
0.00000 |
24 |
−236364091/2730 |
−86580.25311 |
25 |
0 |
0.00000 |
26 |
8553103/6 |
1425517.16667 |
27 |
0 |
0.00000 |
28 |
−23749461029/870 |
−27298231.06782 |
29 |
0 |
0.00000 |
30 |
8615841276005/14322 |
601580873.90064 |
31 |
0 |
0.00000 |
32 |
−7709321041217/510 |
−15116315767.09216 |
33 |
0 |
0.00000 |
34 |
2577687858367/6 |
429614643061.16667 |
35 |
0 |
0.00000 |
36 |
−26315271553053477373/1919190 |
−13711655205088.33277 |
37 |
0 |
0.00000 |
38 |
2929993913841559/6 |
488332318973593.16667 |
39 |
0 |
0.00000 |
40 |
−261082718496449122051/13530 |
−19296579341940068.14863 |
41 |
0.00000 ∙ 100 |
42 |
8.41693 ∙ 1017 |
43 |
0.00000 ∙ 100 |
44 |
−4.03381 ∙ 1019 |
45 |
0.00000 ∙ 100 |
46 |
2.11507 ∙ 1021 |
47 |
0.00000 ∙ 100 |
48 |
−1.20866 ∙ 1023 |
49 |
0.00000 ∙ 100 |
50 |
7.50087 ∙ 1024 |
51 |
0.00000 ∙ 100 |
52 |
−5.03878 ∙ 1026 |
53 |
0.00000 ∙ 100 |
54 |
3.65288 ∙ 1028 |
55 |
0.00000 ∙ 100 |
56 |
−2.84988 ∙ 1030 |
57 |
0.00000 ∙ 100 |
58 |
2.38654 ∙ 1032 |
59 |
0.00000 ∙ 100 |
60 |
−2.13999 ∙ 1034 |
61 |
0.00000 ∙ 100 |
62 |
2.05010 ∙ 1036 |
63 |
0.00000 ∙ 100 |
64 |
−2.09380 ∙ 1038 |
65 |
0.00000 ∙ 100 |
66 |
2.27527 ∙ 1040 |
67 |
0.00000 ∙ 100 |
68 |
−2.62577 ∙ 1042 |
69 |
0.00000 ∙ 100 |
70 |
3.21251 ∙ 1044 |
71 |
0.00000 ∙ 100 |
72 |
−4.15983 ∙ 1046 |
73 |
0.00000 ∙ 100 |
74 |
5.69207 ∙ 1048 |
75 |
0.00000 ∙ 100 |
76 |
−8.21836 ∙ 1050 |
77 |
0.00000 ∙ 100 |
78 |
1.25029 ∙ 1053 |
79 |
0.00000 ∙ 100 |
80 |
−2.00156 ∙ 1055 |
81 |
0.00000 ∙ 100 |
82 |
3.36750 ∙ 1057 |
83 |
0.00000 ∙ 100 |
84 |
−5.94710 ∙ 1059 |
85 |
0.00000 ∙ 100 |
86 |
1.10119 ∙ 1062 |
87 |
0.00000 ∙ 100 |
88 |
−2.13553 ∙ 1064 |
89 |
0.00000 ∙ 100 |
90 |
4.33289 ∙ 1066 |
91 |
0.00000 ∙ 100 |
92 |
−9.18855 ∙ 1068 |
93 |
0.00000 ∙ 100 |
94 |
2.03469 ∙ 1071 |
95 |
0.00000 ∙ 100 |
96 |
−4.70038 ∙ 1073 |
97 |
0.00000 ∙ 100 |
98 |
1.13180 ∙ 1076 |
99 |
0.00000 ∙ 100 |
100 |
−2.83822 ∙ 1078 |