De Taylor-reeks van
f (x) = 1/(1 − x)
De grafiek van f (x) = 1/(1 − x)
Ik stel:
Zodat de functie deze vorm krijgt:
De reeks van 1/(1 + x) kun je elders vinden in de
tabel met Taylor-reeksen:
Nu moet u uiteraard weer vervangen worden door x:
Het is belangrijk om te kijken naar de convergentie van deze reeks, want indien de reeks divergeert
dan hebben we er niets aan.
De belangrijkste voorwaarde voor convergentie is indien de termen uitdoven als het ware, dus als een term
voor grote waarden van n kleiner is dan de voorgaande term (in
absolute waarden gesproken uiteraard):
Voor deze reeks ziet dat er als volgt uit:
Dit moet kleiner dan één zijn, oftewel | x | < 1.
De grafiek van f (x) met daaroverheen de Taylor-reeks met 10 termen (de oranje lijn),
20 termen (de paarse lijn), 50 termen (de grijze lijn) en 100 termen (de blauwe lijn)
Ik zoom nog even in op het convergentiegebied:
De grafiek van f (x) met daaroverheen de Taylor-reeks met 10 termen (de oranje lijn),
20 termen (de paarse lijn), 50 termen (de grijze lijn) en 100 termen (de blauwe lijn)