Vectoren, vraagstuk 34

Gegeven het scalarveld G en het punt a:



  1. Bereken:



    Als:



  2. Wat is vanuit a de richting van de ‘grootste toename’ van G?
  3. In welke richting is:

  1. Bereken:



    Als:



    Om de gradiënt van G te berekenen bepalen we eerst alle partiële afgeleiden:







    Daarmee is de gradiënt van G in een willekeurig punt:



    Vervolgens vullen we het punt a in:



    De gradiënt in de richting van w is de projectie van G op w:



    Of uitgeschreven in componenten:


  2. Wat is vanuit a de richting van de ‘grootste toename’ van G?

    De gradiënt van G in a is:



    De gradiënt in een willekeurige richting u is de projectie van de gradiënt op u (en voor u kiezen we voor het gemak een eenheidsvector):



    Hieruit is eenvoudig in te zien dat de projectie van de gradiënt op u maximaal is voor cos φ = 1, oftewel voor φ = 0 graden. De grootste toename van G is dus in de richting van de gradiëntvector zelf.

  3. In welke richting is:



    De gradiënt in een willekeurige richting u is de projectie van de gradiënt op u en die dient dus nul te zijn (het inwendig product dient dus nul te zijn):



    In iedere richting dat de y-component en de z-component van u gelijk zijn is de gradiënt gelijk aan nul (ongeacht wat dan de x-component van u is).